說到高二數(shù)學,很多同學都會說難很難,的確,相對而言,高二數(shù)學是高中數(shù)學中最難的一部分,但我們一定要把知識點給吃透。下面就是小編給大家?guī)淼母叨?shù)學必修五知識點總結,希望能幫助到大家!
高二數(shù)學必修五知識點總結1
1.等差數(shù)列通項公式
an=a1+(n-1)d
n=1時a1=S1
n≥2時an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項
由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。
有關系:A=(a+b)÷2
3.前n項和
倒序相加法推導前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數(shù)列性質(zhì)
一、任意兩項am,an的關系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項公式。
二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N
_
、若m,n,p,q∈N_且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N_有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。
高二數(shù)學必修五知識點總結2
●解三角形
1. ?
2.解三角形中的基本策略:角 邊或邊 角。如 ,則三角形的形狀?
3.三角形面積公式 ,如三角形的三邊是 ,面積是?
4.求角的幾種問題: ,求
△面積是 ,求 . ,求cosc
5.一些術語名詞:仰角(俯角),方位角,視角分別是什么?
6.三角形的三個內(nèi)角a,b,c成等差數(shù)列,則 三角形的三邊a,b,c成等差數(shù)列,則
三角形的三邊a,b,c成等比數(shù)列,則 ,你會證明這三個結論么?
數(shù)列
★★1.一個重要的關系 注意驗證 與 等不等?如已知
2. 為等差
為等比
注:等比數(shù)列有一個非常重要的關系:所有的奇(偶)數(shù)項 .如{an}是等比數(shù)列,且
★★3.等差數(shù)列常用的性質(zhì):
①下標和相等的兩項和相等,如 是方程 的兩根,則
②在等差數(shù)列中, ……成等差數(shù)列,如在等差數(shù)列中,
③若一個項數(shù)為奇數(shù)的等差數(shù)列,則 , ------
4.數(shù)列的項問題一定是要研究該數(shù)列是怎么變化的?(數(shù)列的單調(diào)性)——研究 的大小。
數(shù)列的(小)和問題,
如:等差數(shù)列中, ,則 時的n= .等差數(shù)列中, ,則 時的n=
5.數(shù)列求和的方法:
①公式法:等差數(shù)列的前5項和為15,后5項和為25,且 ★②分組求和法:
★③裂項求和法——兩種情況的數(shù)列用:
★★④錯位相減法——等差比數(shù)列(如 )——如何錯位?相減要注意什么?最后不要忘記什么?
6.求通項的方法
①運用關系式 ★②累加(如 )
★③累乘(如
★★④構造新數(shù)列——如 ,a1=1,求an=?
高二數(shù)學必修五知識點總結3
解三角形
1、三角形三角關系:A+B+C=180°;C=180°-(A+B);
2、三角形三邊關系:a+b>c;a-b3、三角形中的基本關系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC,A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222
4、正弦定理:在???C中,a、b、c分別為角?、?、C的對邊,R為???C的外abc???2R.接圓的半徑,則有sin?sin?sinCsin
5、正弦定理的變形公式:
①化角為邊:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R
a?b?cabc???③a:b:c?sin?:sin?:sinC;④.sin??sin??sinCsin?sin?sinC②化邊為角:sin??6、兩類正弦定理解三角形的問題:
①已知兩角和任意一邊,求其他的兩邊及一角.
②已知兩角和其中一邊的對角,求其他邊角.(對于已知兩邊和其中一邊所對的角的題型要注意解的情況(一解、兩解、三解))
7、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?, 222222c2?a2?b2?2abcosC.
b2?c2?a2a2?c2?b2a2?b2?c2
8、余弦定理的推論:cos??,cos??,cosC?.2bc2ac2ab(余弦定理主要解決的問題:1.已知兩邊和夾角,求其余的量。2.已知三邊求角)
9、余弦定理主要解決的問題:①已知兩邊和夾角,求其余的量。②已知三邊求角)
10、如何判斷三角形的形狀:判定三角形形狀時,可利用正余弦定理實現(xiàn)邊角轉(zhuǎn)化,統(tǒng)一成邊的形式或角的形式設a、b、c是???C的角?、?、C
的對邊,則:
①若a?b?c,則C?90;②若a?b?c,則C?90;
③若a?b?c,則C?90.
高二數(shù)學必修五知識點總結4
數(shù)列
1、數(shù)列的定義及數(shù)列的通項公式:
①. an?f(n),數(shù)列是定義域為N
的函數(shù)f(n),當n依次取1,2,???時的一列函數(shù)值 ② i.歸納法
若S0?0,則an不分段;若S0?0,則an分段iii.若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數(shù)列?an?m?
?Sn?f(an)
iv. 若Sn?f(an),先求a
1?得到關于an?1和an的遞推關系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an
?Sn?1?2an?1?1
2.等差數(shù)列:
① 定義:a
n?1?an=d(常數(shù)),證明數(shù)列是等差數(shù)列的重要工具。 ② 通項d?0時,an為關于n的一次函數(shù);
d>0時,an為單調(diào)遞增數(shù)列;d<0時,a
n為單調(diào)遞減數(shù)列。
n(n?1)2
③ 前n?na1?
d,
d?0時,Sn是關于n的不含常數(shù)項的一元二次函數(shù),反之也成立。
④ 性質(zhì): ii. 若?an?為等差數(shù)列,則am,am?k,am?2k,…仍為等差數(shù)列。 iii.若?an?為等差數(shù)列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數(shù)列。 iv 若A為a,b的等差中項,則有A?3.等比數(shù)列:
① 定義:
an?1an
?q(常數(shù)),是證明數(shù)列是等比數(shù)列的重要工具。
a?b2
。
② 通項時為常數(shù)列)。
③.前n項和
需特別注意,公比為字母時要討論.
高二數(shù)學必修五知識點總結5
排列P------和順序有關
組合C-------不牽涉到順序的問題
排列分順序,組合不分
例如把5本不同的書分給3個人,有幾種分法."排列"
把5本書分給3個人,有幾種分法"組合"
1.排列及計算公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).
2.組合及計算公式
從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為
n!/(n1!_2!_.._k!).
k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如9!=9________
從N倒數(shù)r個,表達式應該為n_n-1)_n-2)..(n-r+1);
因為從n到(n-r+1)個數(shù)為n-(n-r+1)=r
高二數(shù)學必修五知識點歸納大全5篇
1.《高中數(shù)學必修二知識點總結大全 高二數(shù)學必修五知識點歸納大全5篇》援引自互聯(lián)網(wǎng),旨在傳遞更多網(wǎng)絡信息知識,僅代表作者本人觀點,與本網(wǎng)站無關,侵刪請聯(lián)系頁腳下方聯(lián)系方式。
2.《高中數(shù)學必修二知識點總結大全 高二數(shù)學必修五知識點歸納大全5篇》僅供讀者參考,本網(wǎng)站未對該內(nèi)容進行證實,對其原創(chuàng)性、真實性、完整性、及時性不作任何保證。
3.文章轉(zhuǎn)載時請保留本站內(nèi)容來源地址,http://f99ss.com/jiaoyu/505859.html