反比例關(guān)系是一種重要的數(shù)量關(guān)系,它滲透了初步的函數(shù)思想,又為中學(xué)數(shù)學(xué)的反比例函數(shù)的教學(xué)奠定基礎(chǔ),下面就是小編給大家?guī)淼男W(xué)六年級數(shù)學(xué)《反比例》優(yōu)質(zhì)教案三篇,希望能幫助到大家!

  小學(xué)六年級數(shù)學(xué)《反比例》優(yōu)質(zhì)教案一

  教學(xué)目標(biāo):

  1、通過實(shí)踐活動,理解反比例的意義,并能根據(jù)反比例的意義,正確地判斷兩種相關(guān)聯(lián)的量是否成反比例;

  2、通過小組間的合作學(xué)習(xí),培養(yǎng)學(xué)生的合作意識、參與意識,訓(xùn)練其觀察能力及概括能力;

  3、利用多媒體動畫的演示,讓學(xué)生體驗(yàn)到反比例的變化規(guī)律。

  教學(xué)重點(diǎn):感受反比例的變化,概括反比例的意義;

  教學(xué)難點(diǎn):正確判斷兩種相關(guān)聯(lián)的量是否成反比例;

  教學(xué)準(zhǔn)備:20支鉛筆、一個(gè)筆筒;相關(guān)課件;學(xué)生分小組(每組一份觀察記錄單)

  每次拿的支數(shù)

  10

  5

  4

  2

  1

  拿的次數(shù)

  總支數(shù)

  教學(xué)過程:

  一、復(fù)習(xí)

  1、什么叫做“成正比例的量”?

  2、判斷兩種量是否成正比例關(guān)鍵是什么?

  3、練習(xí):課本表中的兩種量是不是成正比例?為什么?

  二、小組協(xié)作 概括“成反比例的量”的意義

  (一)活動一

  師:好,現(xiàn)在請同學(xué)們拿出課前準(zhǔn)備的學(xué)具,以小組為單位,動手操作,按要求認(rèn)真填寫觀察記錄單??茨膫€(gè)組完成的又快又好!

  1、學(xué)生匯報(bào)觀察記錄單的填寫結(jié)果。

  2、引導(dǎo)觀察:在填、拿的過程中,你發(fā)現(xiàn)了什么?

  3、師:你能根據(jù)表格,寫出這三個(gè)量的關(guān)系式嗎?

  4、小結(jié):通過剛才的活動,我們發(fā)現(xiàn)每次拿的支數(shù)變化,拿的次數(shù)也隨著變化,但每次拿的支數(shù)和拿的次數(shù)的積即總支數(shù)總是一定的。

  5、揭示反比例的意義(閱讀課本,明確反比例關(guān)系)

  6、如果用x、y 表示兩種相關(guān)聯(lián)的量,用k表示積,反比例關(guān)系式怎樣表示?

  (二)活動二:(例3)

  1、課件出示例3,指名讀題,學(xué)生獨(dú)立完成

  2、總結(jié)歸納出正比例和反比例的相同點(diǎn)和不同點(diǎn)

  三、強(qiáng)化練習(xí) 發(fā)展提高

  1判定兩個(gè)量是否成反比例,主要看它們的( )是否一定。

  2全班人數(shù)一定,每組的人數(shù)和組數(shù)。

  ( )和( )是相關(guān)聯(lián)的量。

  每組的人數(shù)×組數(shù)=全班人數(shù)(一定)

  所以( )和( )是成反比例的量。

  3判斷下面每題中的兩種量是不是成反比例,并說明理由。

  糖果的總數(shù)一定,每袋糖果的粒數(shù)和裝的袋數(shù)。

  煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。

  生產(chǎn)電視機(jī)的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。

  長方形的面積一定,它的長和寬。

  4機(jī)動練習(xí):

  想一想:鋪地面積一定時(shí),方磚邊長與所需塊數(shù)成不成反比例?為什么?

  四、全課總結(jié)

  1、你能不能結(jié)合日常生活舉一些反比例的例子。

  2、今天這節(jié)課,你有什么收獲?還有什么遺憾?

  小學(xué)六年級數(shù)學(xué)《反比例》優(yōu)質(zhì)教案二

  教學(xué)目標(biāo):

  1、理解反比例的意義。

  2、能根據(jù)反比例的意義,正確判斷兩種量是否成反比例。

  3、培養(yǎng)學(xué)生的抽象概括能力和判斷推理能力。

  教學(xué)重點(diǎn):

  引導(dǎo)學(xué)生理解反比例的意義。

  教學(xué)難點(diǎn):

  利用反比例的意義,正確判斷兩種量是否成反比例。

  教學(xué)過程:

  一、復(fù)習(xí)鋪墊

  1、成正比例的量有什么特征?

  2、下表中的兩種量是不是成正比例?為什么?

  二、自主探究

  (一)教學(xué)例1

  1.出示例1,提出觀察思考要求:

  從表中你發(fā)現(xiàn)了什么?這個(gè)表同復(fù)習(xí)的表相比,有什么不同?

  (1)表中的兩種量是每小時(shí)加工的數(shù)量和所需的加工時(shí)間。

  教師板書:每小時(shí)加工數(shù)和加工時(shí)間

  (2)每小時(shí)加工的數(shù)量擴(kuò)大,所需的加工時(shí)間反而縮小;每小時(shí)加工的數(shù)量縮小,所需的加工時(shí)間反而擴(kuò)大。

  教師追問:這是兩種相關(guān)聯(lián)的量嗎?為什么?

  (3)每兩個(gè)相對應(yīng)的數(shù)的乘積都是600.

  2.這個(gè)600實(shí)際上就是什么?每小時(shí)加工數(shù)、加工時(shí)間和零件總數(shù),怎樣用式子表示它們之間的關(guān)系?

  教師板書:零件總數(shù)

  每小時(shí)加工數(shù)×加工時(shí)間=零件總數(shù)

  3.小結(jié)

  通過剛才的研究,我們知道,每小時(shí)加工數(shù)和加工時(shí)間是兩種相關(guān)聯(lián)的量,每小時(shí)加工數(shù)變化,加工時(shí)間也隨著變化,每小時(shí)加工數(shù)乘以加工時(shí)間等于零件總數(shù),這里的零件總數(shù)是一定的。

  (二)教學(xué)例2

  1.出示例2,根據(jù)題意,學(xué)生口述填表。

  2.教師提問:

  (1)表中有哪兩種量?是相關(guān)聯(lián)的量嗎?

  教師板書:每本張數(shù)和裝訂本數(shù)

  (2)裝訂的本數(shù)是怎樣隨著每本的張數(shù)變化的?

  (3)表中的兩種量有什么變化規(guī)律?

  (三)比較例1和例2,概括反比例的意義。

  1.請你比較例1和例2,它們有什么相同點(diǎn)?

  (1)都有兩種相關(guān)聯(lián)的量。

  (2)都是一種量變化,另一種量也隨著變化。

  (3)都是兩種量中相對應(yīng)的兩個(gè)數(shù)的積一定。

  2.教師小結(jié)

  像這樣的兩種量,我們就把它們叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。

  3.如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的積一定,反比例關(guān)系可以用一個(gè)什么樣的式子表示?

  教師板書: xy =k(一定)

  三、課堂小結(jié)

  1、這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學(xué)會了怎樣判斷兩種量是不是成反比例。在判斷時(shí),同學(xué)們要按照反比例的意義,認(rèn)真分析,做出正確的判斷。

  2、通過今天的學(xué)習(xí),正比例關(guān)系和反比例關(guān)系有什么相同點(diǎn)和不同點(diǎn)?

  四、課堂練習(xí)

  完成教材43頁做一做

  五、課后作業(yè)

  練習(xí)七6、7、8、9題。

  六、板書設(shè)計(jì)

  成反比例的量 xy=k(一定)

  每小時(shí)加工數(shù)×加工時(shí)間=零件總數(shù)(一定)

  每本頁數(shù)×裝訂本數(shù)=紙的總頁數(shù)(一定)

  小學(xué)六年級數(shù)學(xué)《反比例》優(yōu)質(zhì)教案三

  教學(xué)目標(biāo):

  1.通過感知生活中的事例,理解并掌握反比例的含義,經(jīng)初步判斷兩種相關(guān)聯(lián)的量是否成反比例

  2.培養(yǎng)學(xué)生的邏輯思維能力

  3.感知生活中的數(shù)學(xué)知識

  重點(diǎn)難點(diǎn)1.通過具體問題認(rèn)識反比例的量。

  2.掌握成反比例的量的變化規(guī)律及其 特征

  教學(xué)難點(diǎn):

  認(rèn)識反比例,能根據(jù)反比例的意義判斷兩個(gè)相關(guān)聯(lián)的量是不是成反比例。

  教學(xué)過程:

  一、課前預(yù)習(xí)

  預(yù)習(xí)24---26頁內(nèi)容

  1、什么是成反比例的量?你是怎么理解的?

  2、情境一中的兩個(gè)表中量變化關(guān)系相同嗎?

  3、三個(gè)情境中的兩個(gè)量哪些是成反比例的量?為什么?

  二、展示與交流

  利用反義詞來導(dǎo)入今天研究的課題。今天研究兩種量成反比例關(guān)系的變化規(guī)律

  情境(一)

  認(rèn)識加法表中和是12的直線及乘法表中積是12的曲線。

  引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個(gè)加數(shù)隨另一個(gè)加數(shù)的變化而變化;乘法表中積是12,一個(gè)乘數(shù)隨另一個(gè)乘數(shù)的變化而變化。

  情境(二)

  讓學(xué)生把汽車行駛的速度和時(shí)間的表填完整,當(dāng)速度發(fā)生變化時(shí),時(shí)間怎樣變化?每

  兩個(gè)相對應(yīng)的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?獨(dú)立觀察,思考

  同桌交流,用自己的語言表達(dá)

  寫出關(guān)系式:速度×?xí)r間=路程(一定)

  觀察思考并用自己的語言描述變化關(guān)系乘積(路程)一定

  情境(三)

  把杯數(shù)和每杯果汁量的表填完整,當(dāng)杯數(shù)發(fā)生變化時(shí),每杯果汁量怎樣變化?每兩個(gè)相對應(yīng)的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?用自己的語言描述變化關(guān)系

  寫出關(guān)系式:每杯果汁量×杯數(shù)=果汗總量(一定)

  5、以上兩個(gè)情境中有什么共同點(diǎn)?

  反比例意義

  引導(dǎo)小結(jié):都有兩種相關(guān)聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對應(yīng)的兩個(gè)數(shù)的乘積是一定的。這兩種量之間是反比例關(guān)系。

  活動四:想一想

  二、 反饋與檢測

  1、判斷下面每題是否成反比例

  (1)出油率一定,香油的質(zhì)量與芝麻的質(zhì)量。

  (2)三角形的面積一定,它的底與高。

  (3)一個(gè)數(shù)和它的倒數(shù)。

  (4)一捆100米電線,用去長度與剩下長度。

  (5)圓柱體的體積一定,底面積和高。

  (6)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。

  (7)長方形的長一定,面積和寬。

  (8)平行四邊形面積一定,底和高。

  2、教材“練一練”P33第1題。

  3、教材“練一練”P33第2題。

  4、找一找生活中成反比例的例子,并與同伴交流。

1.《反比例函數(shù)教案 小學(xué)六年級數(shù)學(xué)《反比例》優(yōu)質(zhì)教案三篇》援引自互聯(lián)網(wǎng),旨在傳遞更多網(wǎng)絡(luò)信息知識,僅代表作者本人觀點(diǎn),與本網(wǎng)站無關(guān),侵刪請聯(lián)系頁腳下方聯(lián)系方式。

2.《反比例函數(shù)教案 小學(xué)六年級數(shù)學(xué)《反比例》優(yōu)質(zhì)教案三篇》僅供讀者參考,本網(wǎng)站未對該內(nèi)容進(jìn)行證實(shí),對其原創(chuàng)性、真實(shí)性、完整性、及時(shí)性不作任何保證。

3.文章轉(zhuǎn)載時(shí)請保留本站內(nèi)容來源地址,http://f99ss.com/jiaoyu/350402.html