為了幫助大家更好地學(xué)習數(shù)學(xué),提高數(shù)學(xué)運算的能力,百分網(wǎng)小編為大家?guī)硪环莅四昙墧?shù)學(xué)上的期末試卷及答案,文末附有答案,歡迎大家閱讀參考,更多內(nèi)容請關(guān)注應(yīng)屆畢業(yè)生網(wǎng)!
一、選擇題
1.下列四種圖形中,是軸對稱圖形的為( )
A.平行四邊形 B.三角形 C.圓 D.梯形
2.在 , , , , 中,分式的個數(shù)為( )
A.2個 B.3個 C.4個 D.5個
3.計算﹣12a6÷(3a2)的結(jié)果是( )
A.﹣4a3 B.﹣4a8 C.﹣4a4 D.﹣ a4
4.一個多邊形的每一個頂點處取一個外角,這些外角中最多有鈍角( )
A.1個 B.2個 C.3個 D.4個
5.若x+m與x+3的乘積中不含x的一次項,則m的值為( )
A.0 B.1 C.3 D.﹣3
6.如圖,在△ABC中,AB=AC,DE垂直平分AB,分別交AB、AC于點D、E,若∠EBC=30°,則∠A=( )
A.30° B.35° C.40° D.45°
7.下列命題正確的是( )
A.到角兩邊距離相等的點在這個角的平分線上
B.垂直于同一條直線的兩條直線互相平行
C.平行于同一條直線的兩條直線互相平行
D.等腰三角形的高線、角平分線、中線互相重合
8.某機床廠原計劃在一定期限內(nèi)生產(chǎn)240套機床,在實際生產(chǎn)中通過改進技術(shù),結(jié)果每天比原計劃多生產(chǎn)4套,并且提前5天完成任務(wù).設(shè)原計劃每天生產(chǎn)x套機床,根據(jù)題意,下列方程正確的是( )
A. B.
C. D.
9.如圖,OM平分∠AOB,MC∥OB,MD⊥OB于D,若∠OMD=75°,OC=8,則MD的長為( )
A.2 B.3 C.4 D.5
10.無論x、y取任何值,多邊形x2+y2﹣2x﹣4y+6的值總是( )
A.正數(shù) B.負數(shù) C.非正數(shù) D.非負數(shù)
二、填空題(共8小題,每小題3分,滿分24分)
11.已知等腰三角形兩個內(nèi)角度數(shù)之比是1:4,則這個等腰三角形的底角為 .
12.若(ambnb)3=a9b15,那么m+n= .
13.三角形的三邊長分別為3cm,5cm,xcm,則x的取值范圍是 .
14.如圖,AB∥CF,E為DF中點,AB=20,CF=15,則BD= .
15.若一個多邊形的內(nèi)角和等于其外角和的2倍,則它是 邊形.
16.若方程 無解,則k的值為 .
17.如圖,△ABC中,DE是AC的垂直平分線,AE=4cm,△ABD的周長為14cm,則△ABC的周長為 .
18.已知P(5,5),點B、A分別在x的正半軸和y的正半軸上,∠APB=90°,則OA+OB= .
三、解答題(共8小題,滿分66分)
19.計算:
(1)﹣ m2n?(﹣mn2)2
(2)(x2﹣2x)(2x+3)÷(2x)
(3)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2+xy)
(4)(ab﹣b2) .
20.分解因式:
(1)ax4﹣9ay2
(2)2x3﹣12x2+18x.
21.解方程: .
22.先化簡再求值:(1﹣ ) ,其中x=( )﹣1+30.
23.如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(3)寫出點A1,B1,C1的坐標.
24.如圖,已知點P在AB上,∠APD=∠APC,∠DBA=∠CBA,求證:AC=AD.
25.紅紅開車從營口到盤錦奶奶家去,她去時因有事要辦經(jīng)過外環(huán)公路,全程84千米,返回時經(jīng)過遼河大橋,全程45千米,紅紅開車去時的平均速度是返回的1.2倍,所用時間卻比返回時多20分鐘,求紅紅返回時的車速.
26.如圖,△ABC和△AED為等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE.連接BE、CD交于點O,連接AO并延長交CE為點H.
求證:∠COH=∠EOH.
參考答案與試題解析
一、選擇題(共10小題,每小題3分,滿分30分)
1.下列四種圖形中,是軸對稱圖形的為( )
A.平行四邊形 B.三角形 C.圓 D.梯形
【考點】軸對稱圖形.
【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,依據(jù)定義即可得出結(jié)果.
【解答】解:A、平行四邊形不是軸對稱圖形,故本選項錯誤;
B、三角形不一定是軸對稱圖形,故本選項錯誤;
C、圓是軸對稱圖形,故本選項正確;
D、梯形不一定是軸對稱圖形,故本選項錯誤.
故選C.
2.在 , , , , 中,分式的個數(shù)為( )
A.2個 B.3個 C.4個 D.5個
【考點】分式的定義.
【分析】根據(jù)分式與整式的定義對各式進行逐一分析即可.
【解答】解: , 的分母中含有未知數(shù),是分式;
, , 的分母中不含有未知數(shù),是整式.
故選A.
3.計算﹣12a6÷(3a2)的結(jié)果是( )
A.﹣4a3 B.﹣4a8 C.﹣4a4 D.﹣ a4
【考點】整式的除法.
【分析】根據(jù)單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式計算.
【解答】解:﹣12a6÷(3a2)
=(﹣12÷3)?(a6÷a2)
=﹣4a4.
故選C.
4.一個多邊形的每一個頂點處取一個外角,這些外角中最多有鈍角( )
A.1個 B.2個 C.3個 D.4個
【考點】多邊形內(nèi)角與外角.
【分析】根據(jù)多邊形的外角和等于360°,所以外角中鈍角最多有三個.
【解答】解:∵多邊形的外角和等于360°,
∴外角中鈍角最多有3個.
故選C.
5.若x+m與x+3的乘積中不含x的一次項,則m的值為( )
A.0 B.1 C.3 D.﹣3
【考點】多項式乘多項式.
【分析】先根據(jù)已知式子,可找出所有含x的項,合并系數(shù),令含x項的系數(shù)等于0,即可求m的值.
【解答】解:(x+m)(x+3)=x2+(m+3)x+3m,
∵乘積中不含x的一次項,
∴m+3=0,
∴m=﹣3.
故選D.
6.如圖,在△ABC中,AB=AC,DE垂直平分AB,分別交AB、AC于點D、E,若∠EBC=30°,則∠A=( )
A.30° B.35° C.40° D.45°
【考點】線段垂直平分線的性質(zhì);等腰三角形的性質(zhì).
【分析】設(shè)∠A為x,根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,用x表示出∠BEC,根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠C,根據(jù)三角形內(nèi)角和定理列出方程,解方程即可.
【解答】解:設(shè)∠A為x,
∵DE垂直平分AB,
∴EA=EB,
∴∠EBA=∠A=x,
∴∠BEC=2x,
∵AB=AC,
∴∠ABC=∠C,
∴30°+x+30°+2x=180°,
解得,x=40°,
故選:C.
7.下列命題正確的是( )
A.到角兩邊距離相等的點在這個角的平分線上
B.垂直于同一條直線的兩條直線互相平行
C.平行于同一條直線的兩條直線互相平行
D.等腰三角形的高線、角平分線、中線互相重合
【考點】命題與定理.
【分析】利用前提條件的缺失可對A、B進行判斷;根據(jù)平行線的性質(zhì)對C進行判斷;根據(jù)等腰三角形的性質(zhì)對D進行判斷.
【解答】解:A、在平面內(nèi),到角兩邊距離相等的點在這個角的平分線上,所以A選項的說法不正確;
B、在同一平面內(nèi),垂直于同一條直線的兩條直線互相平行,所以B選項的說法不正確;
C、平行于同一條直線的兩條直線互相平行,所以C選項的說法正確;
D、等腰三角形底邊上的高線、頂角的角平分線和底邊上的中線互相重合,所以D選項的說法不正確.
故選C.
8.某機床廠原計劃在一定期限內(nèi)生產(chǎn)240套機床,在實際生產(chǎn)中通過改進技術(shù),結(jié)果每天比原計劃多生產(chǎn)4套,并且提前5天完成任務(wù).設(shè)原計劃每天生產(chǎn)x套機床,根據(jù)題意,下列方程正確的是( )
A. B.
C. D.
【考點】由實際問題抽象出分式方程.
【分析】關(guān)鍵描述語為:提前5天完成任務(wù).等量關(guān)系為:原計劃用的時間﹣5=實際用的時間.
【解答】解:實際用的時間為: ;原計劃用的時間為: .方程可表示為: .
故選B.
9.如圖,OM平分∠AOB,MC∥OB,MD⊥OB于D,若∠OMD=75°,OC=8,則MD的長為( )
A.2 B.3 C.4 D.5
【考點】含30度角的直角三角形;角平分線的性質(zhì);等腰三角形的判定與性質(zhì).
【分析】作ME⊥OB于E,根據(jù)直角三角形的性質(zhì)求出∠MOD=15°,根據(jù)角平分線的定義求出∠AOB的度數(shù),根據(jù)平行線的性質(zhì)得到∠ECM=∠AOB=30°,根據(jù)直角三角形的性質(zhì)求出EM,根據(jù)角平分線的性質(zhì)得到答案.
【解答】解:作ME⊥OB于E,
∵MD⊥OB,∠OMD=75°,
∴∠MOD=15°,
∵OM平分∠AOB,
∴∠AOB=2∠MOD=30°,
∵MC∥OB,
∴∠ECM=∠AOB=30°,
∴EM= MC=4,
∵OM平分∠AOB,MD⊥OB,ME⊥OB,
∴MD=ME=4,
故選:C.
10.無論x、y取任何值,多邊形x2+y2﹣2x﹣4y+6的值總是( )
A.正數(shù) B.負數(shù) C.非正數(shù) D.非負數(shù)
【考點】配方法的應(yīng)用;非負數(shù)的性質(zhì):偶次方.
【分析】利用完全平方公式把多項式分組配方變形后,利用非負數(shù)的性質(zhì)判斷即可.
【解答】解:∵x2+y2﹣2x﹣4y+6=(x2﹣2x+1)+(y2﹣4y+4)+1=(x﹣1)2+(y﹣2)2+1≥1>0,
∴多項式的值總是正數(shù).
故選:A.
1.《八年級上冊數(shù)學(xué)期末試卷及答案 八年級數(shù)學(xué)上期末試卷及答案》援引自互聯(lián)網(wǎng),旨在傳遞更多網(wǎng)絡(luò)信息知識,僅代表作者本人觀點,與本網(wǎng)站無關(guān),侵刪請聯(lián)系頁腳下方聯(lián)系方式。
2.《八年級上冊數(shù)學(xué)期末試卷及答案 八年級數(shù)學(xué)上期末試卷及答案》僅供讀者參考,本網(wǎng)站未對該內(nèi)容進行證實,對其原創(chuàng)性、真實性、完整性、及時性不作任何保證。
3.文章轉(zhuǎn)載時請保留本站內(nèi)容來源地址,http://f99ss.com/jiaoyu/97746.html