重心是三角形三邊中線的交點(diǎn)。重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1,重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等,重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。
三角形重心定義及性質(zhì)證明三角形重心是三角形三中線的交點(diǎn)。當(dāng)幾何體為勻質(zhì)物體且重力場(chǎng)均勻時(shí),重心與該形中心重合。
證明一
1、重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1。
例:已知:△ABC,E、F是AB,AC的中點(diǎn)。EC、FB交于G。
求證:EG=1/2CG
證明:過E作EH∥BF交AC于H。
∵AE=BE,EH//BF
∴AH=HF=1/2AF(平行線分線段成比例定理)
又∵ AF=CF
∴HF=1/2CF
∴HF:CF=1/2
∵EH∥BF
∴EG:CG=HF:CF=1/2
∴EG=1/2CG
方法二 連接EF
利用三角形相似
求證:EG=1/2CG 即證明EF=1/2BC
利用中位線可證明EF=1/2BC利用中位線可證明EF=1/2BC
2、重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。
證明方法:
在△ABC內(nèi),三邊為a,b,c,點(diǎn)O是該三角形的重心,AOA"、BOB"、COC"分別為a、b、c邊上的中線。根據(jù)重心性質(zhì)知:
OA"=1/3AA"
OB"=1/3BB"
OC"=1/3CC"
過O,A分別作a邊上高OH",AH
可知OH"=1/3AH
則,S△BOC=1/2×OH"a=1/2×1/3AHa=1/3S△ABC
同理可證S△AOC=1/3S△ABC
S△AOB=1/3S△ABC
所以,S△BOC=S△AOC=S△AOB
1.《什么是重心 重心是什么的交點(diǎn)有什么性質(zhì)》援引自互聯(lián)網(wǎng),旨在傳遞更多網(wǎng)絡(luò)信息知識(shí),僅代表作者本人觀點(diǎn),與本網(wǎng)站無關(guān),侵刪請(qǐng)聯(lián)系頁腳下方聯(lián)系方式。
2.《什么是重心 重心是什么的交點(diǎn)有什么性質(zhì)》僅供讀者參考,本網(wǎng)站未對(duì)該內(nèi)容進(jìn)行證實(shí),對(duì)其原創(chuàng)性、真實(shí)性、完整性、及時(shí)性不作任何保證。
3.文章轉(zhuǎn)載時(shí)請(qǐng)保留本站內(nèi)容來源地址,http://f99ss.com/jiaoyu/579772.html