高一數(shù)學(xué)必修三中都有什么重點的知識點呢?小編搜集的相關(guān)信息,為各位同學(xué)整理了數(shù)學(xué)必修三的知識點,趕快來學(xué)習(xí)一下吧!

第一章 算法初步
1.1.1 算法的概念
1、算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
2. 算法的特點:
(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.
(5)普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
1.1.2 程序框圖
1、程序框圖基本概念:
(一)程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。

(二)構(gòu)成程序框的圖形符號及其作用
程序框 名稱 功能
起止框 表示一個算法的起始和結(jié)束,是任何流程圖不可少的。
輸入、輸出框 表示一個算法輸入和輸出的信息,可用在算法中任何需要輸入、輸出的位置。
處理框 賦值、計算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫在不同的用以處理數(shù)據(jù)的處理框內(nèi)。
判斷框 判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時明“否”或“N”。
學(xué)習(xí)這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標準的圖形符號。

2、框圖一般按從上到下、從左到右的方向畫。

3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。

4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。

5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。
1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結(jié)構(gòu)。
順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。
2、條件結(jié)構(gòu):
條件結(jié)構(gòu)是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結(jié)構(gòu)可以有多個判斷框。
3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細分為兩類:
(1)、一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
(2)、另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。

注意:1循環(huán)結(jié)構(gòu)要在某個條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個計數(shù)變量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。
1.2.1 輸入、輸出語句和賦值語句
1、輸入語句
(1)輸入語句的一般格式
(2)輸入語句的作用是實現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達式;(5)提示內(nèi)容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。
2、輸出語句
(1)輸出語句的一般格式
(2)輸出語句的作用是實現(xiàn)算法的輸出結(jié)果功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達式的值以及字符。
3、賦值語句

(1)賦值語句的一般格式
(2)賦值語句的作用是將表達式所代表的值賦給變量;

(3)賦值語句中的“=”稱作賦值號,與數(shù)學(xué)中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;

(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。
注意:①賦值號左邊只能是變量名字,而不能是表達式。如:2=X是錯誤的。②賦值號左右不能對換。如“A=B”“B=A”的含義運行結(jié)果是不同的。③不能利用賦值語句進行代數(shù)式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學(xué)中的等號意義不同。
1.2.2條件語句
1、條件語句的一般格式有兩種:(1)IF—THEN—ELSE語句;(2)IF—THEN語句。2、IF—THEN—ELSE語句

1.2.3循環(huán)語句

1、WHILE語句

循環(huán)結(jié)構(gòu)是由循環(huán)語句來實現(xiàn)的。對應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。

當(dāng)計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復(fù)進行,直到某一次條件不符合為止。這時,計算機將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時也稱為“前測試型”循環(huán)。

2、UNTIL語句

直到型循環(huán)又稱為“后測試型”循環(huán),從UNTIL型循環(huán)結(jié)構(gòu)分析,計算機執(zhí)行該語句時,先執(zhí)行一次循環(huán)體,然后進行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進行條件的判斷,這個過程反復(fù)進行,直到某一次條件滿足時,不再執(zhí)行循環(huán)體,跳到LOOP UNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進行條件判斷的循環(huán)語句。

1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)
1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
(1):用較大的數(shù)m除以較小的數(shù)n得到一個商 和一個余數(shù) ;(2):若 =0,則n為m,n的最大公約數(shù);若 ≠0,則用除數(shù)n除以余數(shù) 得到一個商 和一個余數(shù) ;(3):若 =0,則 為m,n的最大公約數(shù);若 ≠0,則用除數(shù) 除以余數(shù) 得到一個商 和一個余數(shù) ;…… 依次計算直至 =0,此時所得到的 即為所求的最大公約數(shù)。
2、更相減損術(shù)
我國早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母?子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯為:(1):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。

3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:
(1)都是求最大公約數(shù)的方法,計算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計算次數(shù)上輾轉(zhuǎn)相除法計算次數(shù)相對較少,特別當(dāng)兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。
(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到
1.3.2秦九韶算法與排序
1、秦九韶算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問題
f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0
=......=(...( anx+an-1)x+an-2)x+...+a1)x+a0
求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1
然后由內(nèi)向外逐層計算一次多項式的值,即
v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0這樣,把n次多項式的求值問題轉(zhuǎn)化成求n個一次多項式的值的問題。
2、兩種排序方法:直接插入排序和冒泡排序
1、直接插入排序
基本思想:插入排序的思想就是讀一個,排一個。將第1個數(shù)放入數(shù)組的第1個元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進行比較,確定它在從大到小的排列中應(yīng)處的位置.將該位置以及以后的元素向后推移一個位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡單,可以舉例說明)
2、冒泡排序
基本思想:依次比較相鄰的兩個數(shù),把大的放前面,小的放后面.即首先比較第1個數(shù)和第2個數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個數(shù)和第3個數(shù)......直到比較最后兩個數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過程,仍從第1個數(shù)開始,到最后第2個數(shù)...... 由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.
1.3.3進位制
1、概念:進位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值??墒褂脭?shù)字符號的個數(shù)稱為基數(shù),基數(shù)為n,即可稱n進位制,簡稱n進制。現(xiàn)在最常用的是十進制,通常使用10個阿拉伯?dāng)?shù)字0-9進行記數(shù)。對于任何一個數(shù),我們可以用不同的進位制來表示。比如:十進數(shù)57,可以用二進制表示為111001,也可以用八進制表示為71、用十六進制表示為39,它們所代表的數(shù)值都是一樣的。
第二章 統(tǒng)計
2.1.1簡單隨機抽樣
1.總體和樣本
在統(tǒng)計學(xué)中 , 把研究對象的全體叫做總體.把每個研究對象叫做個體.把總體中個體的總數(shù)叫做總體容量.為了研究總體 的有關(guān)性質(zhì),一般從總體中隨機抽取一部分: 研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
3.簡單隨機抽樣常用的方法:
(1)抽簽法;⑵隨機數(shù)表法;⑶計算機模擬法;⑷使用統(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調(diào)查對象群體中的每一個對象編號;
(2)準備抽簽的工具,實施抽簽
(3)對樣本中的每一個個體進行測量或調(diào)查
例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動情況。
5.隨機數(shù)表法:
例:利用隨機數(shù)表在所在的班級中抽取10位同學(xué)參加某項活動。
2.1.2系統(tǒng)抽樣
1.系統(tǒng)抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個體的排列對于研究的變量來說,應(yīng)是隨機的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。
2.1.3分層抽樣
1.分層抽樣(類型抽樣):
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾€類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
兩種方法:
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標準:
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。
(2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
3.分層的比例問題:
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實際的比例結(jié)構(gòu)。
2.2.2用樣本的數(shù)字特征估計總體的數(shù)字特征
1、本均值:
2、樣本標準差:
3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數(shù)據(jù)得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當(dāng)樣本量很大時,它們確實反映了總體的信息。
4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變
(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍
(3)一組數(shù)據(jù)中的最大值和最小值對標準差的影響,區(qū)間 的應(yīng)用;
“去掉一個最高分,去掉一個最低分”中的科學(xué)道理
2.3.2兩個變量的線性相關(guān)
1、概念:
(1)回歸直線方程
(2)回歸系數(shù)
2.最小二乘法
3.直線回歸方程的應(yīng)用
(1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關(guān)系
(2)利用回歸方程進行預(yù)測;把預(yù)報因子(即自變量x)代入回歸方程對預(yù)報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。
(3)利用回歸方程進行統(tǒng)計控制規(guī)定Y值的變化,通過控制x的范圍來實現(xiàn)統(tǒng)計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。
4.應(yīng)用直線回歸的注意事項
(1)做回歸分析要有實際意義;
(2)回歸分析前,最好先作出散點圖;
(3)回歸直線不要外延。

第三章 概 率
3.1.1 —3.1.2隨機事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)= 為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值 ,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率
3.1.3 概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A 與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
3.2.1 —3.2.2古典概型及隨機數(shù)的產(chǎn)生
1、(1)古典概型的使用條件:試驗結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=
3.3.1—3.3.2幾何概型及均勻隨機數(shù)的產(chǎn)生
1、基本概念:
(1)幾何概率模型:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)= ;
(3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等。

以上就是本站小編整理的關(guān)于高一數(shù)學(xué)必修三中的知識點總結(jié),僅供各位同學(xué)閱讀參考!

1.《更相減損術(shù) 高一數(shù)學(xué)必修三知識點總結(jié)(超實用)》援引自互聯(lián)網(wǎng),旨在傳遞更多網(wǎng)絡(luò)信息知識,僅代表作者本人觀點,與本網(wǎng)站無關(guān),侵刪請聯(lián)系頁腳下方聯(lián)系方式。

2.《更相減損術(shù) 高一數(shù)學(xué)必修三知識點總結(jié)(超實用)》僅供讀者參考,本網(wǎng)站未對該內(nèi)容進行證實,對其原創(chuàng)性、真實性、完整性、及時性不作任何保證。

3.文章轉(zhuǎn)載時請保留本站內(nèi)容來源地址,http://f99ss.com/jiaoyu/426204.html