與高一高二不同之處在于,高三復(fù)習(xí)知識(shí)是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時(shí)需要進(jìn)行查漏補(bǔ)缺,但也需要同時(shí)提升能力,填補(bǔ)知識(shí)、技能的空白。下面就是小編給大家?guī)?lái)的高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn),希望大能幫助到大家!

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)1

  1、集合的概念

  集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說(shuō)明:某些制定的且不同的對(duì)象集合在一起就稱(chēng)為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫(xiě)字母A、B、C、…來(lái)表示。元素常用小寫(xiě)字母a、b、c、…來(lái)表示。

  集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。

  2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的特性

  (1)確定性:設(shè)A是一個(gè)給定的集合,x是某一具體對(duì)象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互異性:“集合張的元素必須是互異的”,就是說(shuō)“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

  (3)無(wú)序性:集合與其中元素的排列次序無(wú)關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

  4、集合的分類(lèi)

  集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類(lèi):

  有限集:含有有限個(gè)元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

  無(wú)限集:含有無(wú)限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無(wú)限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{x?R|+1=0}。

  5、特定的集合的表示

  為了書(shū)寫(xiě)方便,我們規(guī)定常見(jiàn)的數(shù)集用特定的字母表示,下面是幾種常見(jiàn)的數(shù)集表示方法,請(qǐng)牢記。

  (1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱(chēng)非負(fù)整數(shù)集(或自然數(shù)集),記做N。

  (2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱(chēng)正整數(shù)集,記做N_或N+。

  (3)全體整數(shù)的集合通常簡(jiǎn)稱(chēng)為整數(shù)集Z。

  (4)全體有理數(shù)的集合通常簡(jiǎn)稱(chēng)為有理數(shù)集,記做Q。

  (5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱(chēng)為實(shí)數(shù)集,記做R。

  高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)2

  1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

  (2)棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

  (3)棱臺(tái):

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形.

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形.

  (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線(xiàn)交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形.

  (7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度.

  高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)3

  第一,高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

  第二,平面向量和三角函數(shù)

  重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。

  第三,數(shù)列

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  第四,空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  第五,概率和統(tǒng)計(jì)

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六,解析幾何

  這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類(lèi)題,我總結(jié)下面五類(lèi)??嫉念}型,包括第一類(lèi)所講的直線(xiàn)和曲線(xiàn)的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)該掌握它的通法,第二類(lèi)我們所講的動(dòng)點(diǎn)問(wèn)題,第三類(lèi)是弦長(zhǎng)問(wèn)題,第四類(lèi)是對(duì)稱(chēng)問(wèn)題,這也是2008年高考已經(jīng)考過(guò)的一點(diǎn),第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七,押軸題

  考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)4

  數(shù)列

  1、數(shù)列的通項(xiàng)與數(shù)列的前n項(xiàng)和的關(guān)系:an??S1    (n?1)。 Sn?Sn?1  (n?2)

  m?n?p?q?am?an?ap?aq.2、等差數(shù)列通項(xiàng)公式:an?a1?(n?1)d?am?(n?m)d;

  前n項(xiàng)和公式:Sn?n(a1?an)n(n?1)d ?na1?22

  3、等比數(shù)列通項(xiàng)公式:an?a1qn?1?amqn?m; m?n?p?q?am?an?ap?aq.

  ?na1 (q?1)?前n項(xiàng)和公式: Sn??a1(1?qn) (q?1)?1?q?

  4、常用裂項(xiàng)形式有:??; ?(?);

  ? 1、等比數(shù)列?an?中,a4?4,則a2?a6等于( )

  A.4 B.8 C.16 D.32

  2、公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn.若a4是a3與a7的等比中項(xiàng), S8?32,則S10等于 ( ) A. 18 B. 24 C. 60D. 90 .3、數(shù)列{an}的前n項(xiàng)和記為Sn,a1?t,點(diǎn)(Sn,an?1)在直線(xiàn)y?2x?1上,n?N?.(Ⅰ)當(dāng)實(shí)數(shù)t為何值時(shí),數(shù)列{an}是等比數(shù)列?(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)bn?log3an?1,Tn是數(shù)列{

  1的前n項(xiàng)和,求T2011的值. bn?bn?1

  立體幾何

  ( )

  A 若m??,???,則m?? B若????m,????n,m?n,則???

  C 若 ???,???,則??? D 若 m??,m??,則???

  2、給定下列四個(gè)命題:

 ?、偃粢粋€(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;

  ②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線(xiàn),那么這兩個(gè)平面相互垂直;

  ③垂直于同一直線(xiàn)的兩條直線(xiàn)相互平行;

 ?、苋魞蓚€(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直. 其中,為真命題的是

  A.①和② B.②和③ C.③和④ D.②和④

  1、若m、n是兩條不同的直線(xiàn), ?、?、?是三個(gè)不同的平面,則下列命題中為真命題的是

  2

  第2 / 4頁(yè)

  3、一個(gè)多面體的直觀(guān)圖及三視圖

  如圖所示(其中M、N分別表示是

  AF、BF的點(diǎn))

  (1)求證:MN∥平面CDEF;

  (2)求二面角A—CF—B的余弦值;

  (3)求多面體A—CDEF的體積。

  高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)5

  1.不等式的基本性質(zhì):

  性質(zhì)1:如果a>b,b>c,那么a>c(不等式的傳遞性).

  性質(zhì)2:如果a>b,那么a+c>b+c(不等式的可加性).

  性質(zhì)3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.

  性質(zhì)4:如果a>b>0,c>d>0,那么ac>bd.

  性質(zhì)5:如果a>b>0,n∈N,n>1,那么an>bn

  例1:判斷下列命題的真假,并說(shuō)明理由.若a>b,c=d,則ac2>bd2;(假)若,則a>b;(真)若a>b且ab<0,則;(假)若a若,則a>b;(真)若|a|b2;(充要條件)命題A:a命題A:,命題B:0說(shuō)明:本題要求學(xué)生完成一種規(guī)范的證明或解題過(guò)程,在完善解題規(guī)范的過(guò)程中完善自身邏輯思維的嚴(yán)密性.a,b∈R且a>b,比較a3-b3與ab2-a2b的大小.(≥)說(shuō)明:強(qiáng)調(diào)在最后一步中,說(shuō)明等號(hào)取到的情況,為今后基本不等式求最值作思維準(zhǔn)備。

  例2:設(shè)a>b,n是偶數(shù)且n∈N_,試比較an+bn與an-1b+abn-1的大小.說(shuō)明:本例條件是a>b,與正值不等式乘方性質(zhì)相比在于缺少了a,b為正值這一條件,為此我們必須對(duì)a,b的取值情況加以分類(lèi)討論.因?yàn)閍>b,可由三種情況(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到總有an+bn>an-1b+abn-1.通過(guò)本例可以開(kāi)始滲透分類(lèi)討論的數(shù)學(xué)思想。

高三數(shù)學(xué)必考知識(shí)點(diǎn)復(fù)習(xí)梳理5篇精選

1.《高中數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 2020高中數(shù)學(xué)必考知識(shí)點(diǎn)復(fù)習(xí)梳理5篇精選》援引自互聯(lián)網(wǎng),旨在傳遞更多網(wǎng)絡(luò)信息知識(shí),僅代表作者本人觀(guān)點(diǎn),與本網(wǎng)站無(wú)關(guān),侵刪請(qǐng)聯(lián)系頁(yè)腳下方聯(lián)系方式。

2.《高中數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 2020高中數(shù)學(xué)必考知識(shí)點(diǎn)復(fù)習(xí)梳理5篇精選》僅供讀者參考,本網(wǎng)站未對(duì)該內(nèi)容進(jìn)行證實(shí),對(duì)其原創(chuàng)性、真實(shí)性、完整性、及時(shí)性不作任何保證。

3.文章轉(zhuǎn)載時(shí)請(qǐng)保留本站內(nèi)容來(lái)源地址,http://f99ss.com/jiaoyu/349078.html