所謂三角函數(shù)誘導(dǎo)公式,就是將角n·(π/2)±α的三角函數(shù)轉(zhuǎn)化為角α的三角函數(shù)。那么三角函數(shù)的誘導(dǎo)公式有哪些呢?下面就和小編一起了解一下吧,供大家參考。
常用三角函數(shù)誘導(dǎo)公式大全三角函數(shù)誘導(dǎo)公式一:任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
三角函數(shù)誘導(dǎo)公式二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
三角函數(shù)誘導(dǎo)公式三:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
三角函數(shù)誘導(dǎo)公式四:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
三角函數(shù)誘導(dǎo)公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
三角函數(shù)誘導(dǎo)公式六:π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
三角函數(shù)誘導(dǎo)公式有哪些用法1、公式一到公式五函數(shù)名未改變,公式六函數(shù)名發(fā)生改變。
2、公式一到公式五可簡(jiǎn)記為:函數(shù)名不變,符號(hào)看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函數(shù)值,等于α的同名三角函數(shù)值,前面加上一個(gè)把α看成銳角時(shí)原函數(shù)值的符號(hào)。
3、對(duì)于kπ/2±α(k∈Z)的三角函數(shù)值,
①當(dāng)k是偶數(shù)時(shí),得到α的同名函數(shù)值,即函數(shù)名不改變;
②當(dāng)k是奇數(shù)時(shí),得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇變偶不變)然后在前面加上把α看成銳角時(shí)原函數(shù)值的符號(hào)。(符號(hào)看象限)
1.《三角函數(shù)公式誘導(dǎo)公式 三角函數(shù)的誘導(dǎo)公式有哪些》援引自互聯(lián)網(wǎng),旨在傳遞更多網(wǎng)絡(luò)信息知識(shí),僅代表作者本人觀點(diǎn),與本網(wǎng)站無關(guān),侵刪請(qǐng)聯(lián)系頁(yè)腳下方聯(lián)系方式。
2.《三角函數(shù)公式誘導(dǎo)公式 三角函數(shù)的誘導(dǎo)公式有哪些》僅供讀者參考,本網(wǎng)站未對(duì)該內(nèi)容進(jìn)行證實(shí),對(duì)其原創(chuàng)性、真實(shí)性、完整性、及時(shí)性不作任何保證。
3.文章轉(zhuǎn)載時(shí)請(qǐng)保留本站內(nèi)容來源地址,http://f99ss.com/jiaoyu/341076.html