數學三角函數是一個比較難的部分,下面本站小編就大家整理一下初中數學三角函數萬能解題公式,僅供參考。

萬能公式

應用公式sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}

cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}

tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}

將sinα、cosα、tanα代換成tan(α/2)的式子,這種代換稱為萬能置換.

【推導】:(字符版)

sinα=2sin(α/2)cos(α/2)

=[2sin(α/2)cos(α/2)]/[sin(α/2)^2+cos(α/2)^2]

=[2tan(α/2)]/[1+(tanα/2)^2]

cosα=[cos(α/2)^2-sin(α/2)^2]

=[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]

=[1-tan(α/2)^2]/[1+(tanα/2)^2]

tanα=tan[2*(α/2)]

=2tan(α/2)/[1-tan(α/2)^2]

同角三角函數間的關系

平方關系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·積的關系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

·倒數關系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

銳角三角函數的定義

銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數。

正弦等于對邊比斜邊

余弦等于鄰邊比斜邊

正切等于對邊比鄰邊

余切等于鄰邊比對邊

正割等于斜邊比鄰邊

余割等于斜邊比對邊

正切與余切互為倒數

它的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但并不完全?,F代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。

以上就是本站小編為大家整理的初中數學三角函數萬能解題公式。

1.《萬能的阿發(fā) 初中數學三角函數萬能解題公式》援引自互聯網,旨在傳遞更多網絡信息知識,僅代表作者本人觀點,與本網站無關,侵刪請聯系頁腳下方聯系方式。

2.《萬能的阿發(fā) 初中數學三角函數萬能解題公式》僅供讀者參考,本網站未對該內容進行證實,對其原創(chuàng)性、真實性、完整性、及時性不作任何保證。

3.文章轉載時請保留本站內容來源地址,http://f99ss.com/jiaoyu/331070.html