數(shù)學(xué)中Q表示有理數(shù)集,但Q并不表示有理數(shù),有理數(shù)集與有理數(shù)是兩個(gè)不同的概念。有理數(shù)集是元素為全體有理數(shù)的集合,而有理數(shù)則為有理數(shù)集中的所有元素。
有理數(shù)的認(rèn)識(shí)有理數(shù)為整數(shù)(正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)的統(tǒng)稱。正整數(shù)和正分?jǐn)?shù)合稱為正有理數(shù),負(fù)整數(shù)和負(fù)分?jǐn)?shù)合稱為負(fù)有理數(shù)。因而有理數(shù)集的數(shù)可分為正有理數(shù)、負(fù)有理數(shù)和零。由于任何一個(gè)整數(shù)或分?jǐn)?shù)都可以化為十進(jìn)制循環(huán)小數(shù),反之,每一個(gè)十進(jìn)制循環(huán)小數(shù)也能化為整數(shù)或分?jǐn)?shù),因此,有理數(shù)也可以定義為十進(jìn)制循環(huán)小數(shù)。
有理數(shù)集是整數(shù)集的擴(kuò)張。在有理數(shù)集內(nèi),加法、減法、乘法、除法(除數(shù)不為零)4種運(yùn)算通行無阻。