線性代數(shù)課后題詳解

第一章 行列式

1.利用對角線法則計算下列三階行列式:相信自己加油

201abc

(1)1?4?1; (2)bca ?183cab

111xyx?y

(3)abc; (4)yx?yx. a2b2c2x?yxy

201

解 注意看過程解答(1)1?4?1?2?(?4)?3?0?(?1)?(?1)?1?1?8

?183

?0?1?3?2?(?1)?8?1?(?4)?(?1)

=?24?8?16?4

=?4

abc

(2)bca?acb?bac?cba?bbb?aaa?ccc cab

?3abc?a3?b3?c3

(3)

111

abc?bc2?ca2?ab2?ac2?ba2?cb2 a2b2c2

?(a?b)(b?c)(c?a)

xyx?y

(4)yx?yx

x?yxy

?x(x?y)y?yx(x?y)?(x?y)yx?y3?(x?y)3?x3 ?3xy(x?y)?y3?3x2y?3y2x?x3?y3?x3 ??2(x3?y3)

2.按自然數(shù)從小到大為標準次序,求下列各排列的逆序數(shù):耐心成就大業(yè)

(1)1 2 3 4; (2)4 1 3 2;

(3)3 4 2 1; (4)2 4 1 3;

(5)1 3 … (2n?1) 2 4 … (2n);

(6)1 3 … (2n?1) (2n) (2n?2) … 2.

解(1)逆序數(shù)為0

1 1

線性代數(shù)習題 線性代數(shù)課后習題答案

(2)逆序數(shù)為4:4 1,4 3,4 2,3 2

(3)逆序數(shù)為5:3 2,3 1,4 2,4 1,2 1

(4)逆序數(shù)為3:2 1,4 1,4 3

(5)逆序數(shù)為n(n?1)2:

3 2 1個 5 2,5 4 2個 7 2,7 4,7 6 3個 ……………… …

(2n?1) 2,(2n?1) 4,(2n?1) 6,…,(2n?1) (2n?2)

(n?1)個

(6)逆序數(shù)為n(n?1)

3 2 1個 5 2,5 4 2個 ……………… …

(2n?1) 2,(2n?1) 4,(2n?1) 6,…,(2n?1) (2n?2)

(n?1)個

4 2 1個

6 2,6 4 2個

……………… …

(2n) 2,(2n) 4,(2n) 6,…,(2n) (2n?2) (n?1)個

3.寫出四階行列式中含有因子a11a23的項.

解 由定義知,四階行列式的一般項為

(?1)ta1p1a2p2a3p3a4p4,其中t為p1p2p3p4的逆序數(shù).由于p1?1,p2?3已固定,p1p2p3p4只能形如13□□,即1324或1342.對應(yīng)的t分別為

0?0?1?0?1或0?0?0?2?2

??a11a23a32a44和a11a23a34a42為所求.

4.計算下列各行列式:多練習方能成大財

?4124??2141?

?1202??

?3?121?

(1)??

?10520?; (2)?

?1232?;

??0117????5062??

??abacae??a100?

b10?

(3)??bd?cdde???1

?; (4)??

?c1? ?bfcf?ef??0?1

???00?1d??

解 41244?12?10

1202c2?c31202(1)520c4?7c31032?14 01170010

4?1?10

=122?(?1)4?3

3?14

2 2

線性代數(shù)習題 線性代數(shù)課后習題答案

4?1109910

=12?2c2?c3

314c1?c00?2=0 231714

21412140

3?121c4?c23?122(2)12321230

50625062

21402140

r4?r23?122r4?r13?122

1230 1230=0

21400000

?abacae?bce

(3)bd?cdde=adfb?ce bfcf?efbc?e

?111

=adfbce1?11=4abcdef 11?1

a10001?aba0?1b10r(4)1?ar2?1b10

0?1c10?1c1 00?1d00?1d

1?aba0ad

=(?1)(?1)2?1?1c1c1?aba

3?dc2?1c1?cd

0?1d0?10

(?1)(?1)3?21?abad=?11?cd=abcd?ab?cd?ad?1

5.證明: a2abb2

(1)2aa?b2b=(a?b)3; 111

ax?byay?bzaz?bxxyz

(2)ay?bzaz?bxax?by=(a3?b3)yzx; az?bxax?byay?bzzxy3 3

線性代數(shù)習題 線性代數(shù)課后習題答案

a2(a?1)2(a?2)2(a?3)2

b2

(3)(b?1)2(b?2)2(b?3)2

c2(c?1)2(c?2)2(c?3)2?0; d2(d?1)2(d?2)2(d?3)2

1111

abcd

(4)a2b2c2d2

a4b4c4d4

?(a?b)(a?c)(a?d)(b?c)(b?d)?(c?d)(a?b?c?d); x?10?00

0x?1?00

(5)???????xn?a1

1xn????an?1x?an.

000?x?1

anan?1an?2?a2x?a1

證明 a2ab?a2b2?a2

(1)左邊?c2?c1

c3?c2ab?a2b?2a 1100

2

3?1b2?a2

?(?1)ab?a

b?a2b?2a

?(b?a)(b?a)ab?a

12?(a?b)3?右邊 xay?bzaz?bxyay?bzaz?bx

(2)左邊按第一列

分開ayaz?bxax?by ?bzaz?bxax?by

zax?byay?bzxax?byay?bz

分別再分xay?bzzyzaz?bx

a2yaz?bxx?0?0?bzxax?by

zax?byyxyay?bz

分別再分xyzyzx

a3yzx?b3zxy

zxyxyz

xyzxyz

?a3yzx?b3yzx(?1)2?右邊

zxyzxy

4 4

線性代數(shù)習題 線性代數(shù)課后習題答案

a2a2?(2a?1)(a?2)2(a?3)2

b22

(3) 左邊b?(2b?1)(b?2)2(b?3)2

?2

cc2?(2c?1)(c?2)2(c?3)2

d2d2?(2d?1)(d?2)2(d?3)2

a22a?14a?46a?9

c2?c1b22b?14b?46b?9

c2

3?c1c2c?14c?46c?9

c2

4?c1d2d?14d?46d?9

a2a4a?46a?9a214a?46a?9

按第二列2b4b?46b?9214b?46b?9分成二項2b

c2c4c?46c?9?b

c214c?46c?9

d2d4d?46d?9d214d?46d?9

a492

第一項c3?4c2a2a14a6a

cb492

4?6c2b214b6b

cc492

3?4c2c2?bc14c6c?0 第二項c4?9c2d2d49d214d6d

1000

?ab?ac?ad?a

(4) 左邊a2b2?a2c2?a2d2?a2 a4b4?a4c4?a4d4?a4

b?ac?ad?a

=b2?a2c2?a2d2?a2 b2(b2?a2)c2(c2?a2)d2(d2?a2)

111

=(b?a)(c?a)(d?a)b?ac?ad?a

b2(b?a)c2(c?a)d2(d?a)

1.《線性代數(shù)課后答案詳解 線性代數(shù)習題 線性代數(shù)課后習題答案》援引自互聯(lián)網(wǎng),旨在傳遞更多網(wǎng)絡(luò)信息知識,僅代表作者本人觀點,與本網(wǎng)站無關(guān),侵刪請聯(lián)系頁腳下方聯(lián)系方式。

2.《線性代數(shù)課后答案詳解 線性代數(shù)習題 線性代數(shù)課后習題答案》僅供讀者參考,本網(wǎng)站未對該內(nèi)容進行證實,對其原創(chuàng)性、真實性、完整性、及時性不作任何保證。

3.文章轉(zhuǎn)載時請保留本站內(nèi)容來源地址,http://f99ss.com/jiaoyu/236531.html